
MEMORANDUM

Date: November 28, 2018
To: Dr. Hema Ramsurn
From: Nikita Zdvijkov, Ann Grue, Abhinav Parameswaran, Daniel Webster
Subject: Mixing Chamber Design Project

Introduction: Task & Givens

Task: design a process incorporating an insulated mixing chamber that uses any combination
of four predefined source water streams to output a stream at temperature Te = 70°C and mass
flow rate ṁe = 5 kg/s. Consider at least three solution scenarios; choose the one that minimizes
entropy generation rate Ṡgen. Temperature T and phase are given for all streams (organized in
Table 1, Appendix 1). Pressure P = 1 atm = 101.325 kPa for all streams.

Analysis

For simplicity an insulated mixing chamber is the only engineering device used. System bound-
ary definition: fixed volume of mixing chamber represented by dotted green line in Figure 1. Heat
transfer is negligible because mixing chamber is insulated, i.e. adiabatic system with Q̇ = 0.

FIGURE 1
Mixing chamber schematic diagram

For simplicity, only two source streams are used per solution scenario. In this context of a
pairing of two source streams for a solution scenario, the one at lesser T will be denoted by the
number 1 in subscripts and Figure 1; the one at greater T will be denoted by the number 2. Pairings
are restricted by: T1 < Te < T2. Four viable pairings considered: 1-3, 1-4, 2-3, 2-4. For simplicity
the sum of the areas of the inlets is equal to the area of the outlet; A1 + A2 = Ae.

For simplicity the process is made steady state. Mass flow balance: Σṁi = Σṁe; for two inlets
and one exit:

ṁ1 + ṁ2 = ṁe (1)

Inlet-outlet change in kinetic energy ∆KE = 0, and change in potential energy ∆PE = 0
because changes in fluid velocity and elevation are negligible. Energy loss due to flow friction is
assumed to be negligible. With these restrictions, the process is isenthalpic. Enthalpy flow balance:
Σṁihi = Σṁehe; for two inlets and one exit:

ṁ1h1 + ṁ2h2 = ṁehe (2)
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2nd law of thermodynamics for steady state adiabatic process: Σṁese − Σṁisi = Ṡgen; for two
inlets and one exit:

ṁese − ṁ1s1 − ṁ2s2 = Ṡgen (3)

Solution

Equations (1), (2), and (3) are regarded as a system of equations. Given T and P for all
streams supply the two independent intensive values required to define states. Specific enthalpy h
and specific entropy s values for all streams are resolved using the data tables in our textbook, then
summarized in Table 2 (Appendix 1). Table 3 below summarizes the remaining three unknowns
(ṁ1, ṁ2, and Ṡgen) resolved for the four source pairings, making it clear that the pairing of sources
1 and 4 minimizes Ṡgen at 9.10343 kJ/K. See Appendix 1 for detailed calculations.

TABLE 3
System of equations resolved for the four source pairings

Sources Used
ṁ1 (kg/s) ṁ2 (kg/s) Ṡgen (kJ/K)

1 2 3 4

X X 1.671 3.329 0.1178
X X 4.603 0.397 0.4476

X X 2.782 2.218 0.0441
X X 4.833 0.167 0.1284

Conclusion

From our calculations utilizing justified assumptions (see appendix 1), we have concluded the
mixing scenario with the lowest rate of entropy generation is for inlet 1 to carry source 2 with a
mass flow rate of 2.78 kg/s and for inlet 2 to carry source 3 with a mass flow rate of 2.21 kg/s.
This result is as expected given our acquired intuition about entropy generation. A process with
the fewest irreversibilities, such as the mixing of two fluids that each began at internal equilibrium,
consequently has the lowest rate of entropy generation. Should this project take place in the real
world, we would not recommend using source 4, as it would require a greater heat input to maintain
and superheated steam can be corrosive. Our lack of recommendation for using source 1, despite
its availability due to being close to room temperature, is because neither combinations that used
source 1 had the lowest entropy generation. We would recommend our given solution, which has
lowest rate of entropy generation, because of its feasibility and cost effectiveness.

2



Appendix 1: Calculations

Givens

TABLE 1
Givens for all streams arranged by ascending T

Stream Phase T (°C)

Source 1 liquid water 20
Source 2 liquid water 50

Exit liquid water 70
Source 3 liquid water 95
Source 4 superheated steam 120

Finding h and s

For compressed liquid states at P only slightly greater than Psat, properties are close enough
for our purposes to those at Psat. Therefore saturated water table A-4 in our textbook is used to
find h and s for sources 1 through 3 and exit; no interpolation necessary.

Source 4 in superheated steam phase required the use of table A-6 and interpolation. Suppose
we wanted to find h (120°C, 101.325 kPa). We would use linear interpolation, beginning with the
point-slope formula for a line:

y − y1 = m (x− x1)

⇓

y =
(y2 − y1)

(x2 − x1)
(x− x1) + y1 (4)

⇓

h (120°C, 101.325 kPa) =
(2776.6 kJ/kg− 2675.8 kJ/kg)

(150°C− 100°C)
(120°C− 100°C) + 2675.8 kJ/kg

= 2716.1 kJ/kg

Definition of new function for assistance with interpolation modeled after (4):

map (a, b, c, p, q) =
(q − p)

c− a
(b− a) + p,

The map function can be used for both interpolation and extrapolation. It maps the range
from a to c onto the range from p to q and returns a value that is positioned relative to p and q
in proportion to how the value b is positioned relative to a and c. All code that follows is intended
for use with “GNU Octave”, a free and open-source MatLab equivalent.

Equivalent function definition in Octave:

function retval = map (a,b,c,p,q)

retval = (((b-a)*(q-p))/(c-a))+p; # retval is returned value

endfunction
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Sample usage:

>> map(1,2,3,0,100)

ans = 50

>> map(1,0,3,0,100) # extrapolation demonstration

ans = -50

Hypothetical assumption: h (120°C, 101.325 kPa) = h (120°C, 0.10 MPa) close enough for our pur-
poses. Solving for h (120°C, 0.10 MPa) again, this time using the map function:

h (120°C, 0.10 MPa) = map(100°C, 120°C, 150°C,

2675.8 kJ/kg, 2776.6 kJ/kg)

= 2716.1 kJ/kg

Octave equivalent:

>> map( 100, 120, 150, 2675.8, 2776.6 )

ans = 2716.1

Now: interpolation between different P values as well as T . It is helpful to think of it as double
interpolation or nested interpolation, where one of the map function’s instances is actually for
extrapolation.

h (120°C, 101.325 kPa) = map(0.10 MPa, 0.101325 MPa, 0.20 MPa,

h (120°C, 0.10 MPa) , h (120°C, 0.20 MPa))

= map(0.10 MPa, 0.101325 MPa, 0.20 MPa,

map(100°C, 120°C, 150°C,

2675.8 kJ/kg, 2776.6 kJ/kg),

map(120.21°C, 120°C, 150°C,

2706.3 kJ/kg, 2769.1 kJ/kg))

= 2716.3 kJ/kg

This number is not very different from that derived by assuming P = 0.10 MPa, bringing into
question the utility of double interpolation as opposed to single interpolation for this application.

Octave equivalent:

>> map( .1, .101325, .2, map( 100, 120, 150, 2675.8, 2776.6 ), map( 100, 120,

150, 2706.3, 2769.1 ) )

ans = 2716.3

Specific entropy single interpolation:

s (120°C, 0.20 MPa)) = map(100°C, 120°C, 150°C,

7.3611 kJ/kg·K, 7.6148 kJ/kg·K)

= 7.4626 kJ/kg·K

Octave equivalent:
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>> map( 100, 120, 150, 7.3611, 7.6148 )

ans = 7.4626

Specific entropy double interpolation:

s (120°C, 101.325 kPa) = map(0.10 MPa, 0.101325 MPa, 0.20 MPa,

s (120°C, 0.10 MPa) , s (120°C, 0.20 MPa))

= map(0.10 MPa, 0.101325 MPa, 0.20 MPa,

map(100°C, 120°C, 150°C,

7.3611 kJ/kg·K, 7.6148 kJ/kg·K),

map(120.21°C, 120°C, 150°C,

7.1270 kJ/kg·K, 7.2810 kJ/kg·K))

= 7.4589 kJ/kg·K

Octave equivalent:

>> map( .1, .101325, .2, map( 100, 120, 150, 7.3611, 7.6148 ), map( 100, 120,

150, 7.1270, 7.2810 ) )

ans = 7.4589

While it is simpler to use single interpolation and the benefit to double interpolation is marginal we
can afford to perform double interpolation, so we did, so we use the results it gives moving forward.

TABLE 2
State variables for all streams, sorted by ascending T

Stream T (°C) h (kJ/kg) s (kJ/kg·K)

Source 1 20 83.915 0.2965
Source 2 50 209.34 0.7038

Exit 70 293.07 0.9551
Source 3 95 398.09 1.2504
Source 4 120 2716.3 7.4589

Solving System of Equations

The following system of equations consists of three equations (mass balance, enthalpy balance,
and 2nd law) and a total of three unknowns (two inlet mass flow rates and entropy generation rate,
i.e. ṁ1, ṁ1, and Ṡgen.) It is manipulated into a form suitable for Gauss-Jordan elimination then
solved by that method. 

ṁ1 + ṁ2 = ṁe

ṁ1h1 + ṁ2h2 = ṁehe

ṁese − ṁ1s1 − ṁ2s2 = Ṡgen

⇓
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(1)ṁ1 + (1)ṁ2 + (0)Ṡgen = (ṁe)

(h1)ṁ1 + (h2)ṁ2 + (0)Ṡgen = (ṁehe)

(−s1)ṁ1 + (−s2)ṁ2 + (−1)Ṡgen = (−ṁese)

⇓

rref

 1 1 0 5
h1 h2 0 5× 293.07
s1 s2 1 5× 0.9551


=1 0 0 ṁ1

0 1 0 ṁ2

0 0 1 Ṡgen


where ṁ1, ṁ1, and Ṡgen are resolved

Octave rref() commands:

Sources 1 and 3:

>> rref( [ 1, 1, 0, 5; 83.915, 398.09, 0, 5*293.07; 0.2965, 1.2504, 1, 5*0.9551

] )

ans =

1.00000 0.00000 0.00000 1.67136

0.00000 1.00000 0.00000 3.32864

0.00000 0.00000 1.00000 0.11781

Sources 1 and 4:

>> rref( [ 1, 1, 0, 5; 83.915, 2716.3, 0, 5*293.07; 0.2965, 7.4589, 1, 5*0.9551

] )

ans =

1.00000 0.00000 0.00000 4.60273

0.00000 1.00000 0.00000 0.39727

0.00000 0.00000 1.00000 0.44757

Sources 2 and 3:

>> rref( [ 1, 1, 0, 5; 209.34, 398.09, 0, 5*293.07; 0.7038, 1.2504, 1, 5*0.9551

] )

ans =

1.00000 0.00000 0.00000 2.78199

0.00000 1.00000 0.00000 2.21801

0.00000 0.00000 1.00000 0.04413

Sources 2 and 4:

>> rref( [ 1, 1, 0, 5; 209.34, 2716.3, 0, 5*293.07; 0.7038, 7.4589, 1, 5*0.9551

] )

ans =

1.00000 0.00000 0.00000 4.83300

0.00000 1.00000 0.00000 0.16700

0.00000 0.00000 1.00000 0.12843
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Appendix 2: Reference Data Tables

See following pages for exact tables used from the textbook.
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